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Figure 1. TraceForge provides the structured training signal, and TraceGen consumes this signal to learn a world model in 3D
trace space. Pretrained on 1.8M observation–trace–language triplets from the TraceForge-123K corpus—combining in-the-wild human
videos and heterogeneous robot datasets—TraceGen acquires a strong 3D motion prior, enabling rapid adaptation to new skills and new
environments. Bottom-left: Robot-domain warm-up. With only five target-robot demonstrations, TraceGen reaches 80% success across
four tasks and is 50× faster than video-based world models (Veo 3.1 inference via API averages). Bottom-right: Human→Robot transfer.
With just five uncalibrated handheld human videos—featuring different backgrounds and object positions—TraceGen attains 67.5% real-
robot success.

*Equal contribution
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Abstract

Learning new robot tasks on new platforms and in new
scenes from only a handful of demonstrations remains chal-
lenging. While videos of other embodiments—humans and
different robots—are abundant, differences in embodiment,
camera, and environment hinder their direct use. We ad-
dress the small-data problem by introducing a unifying,
symbolic representation—a compact 3D “trace-space” of
scene-level trajectories—that enables learning from cross-
embodiment, cross-environment, and cross-task videos. We
present TraceGen, a world model that predicts future
motion in trace-space rather than pixel space, abstract-
ing away appearance while retaining the geometric struc-
ture needed for manipulation. To train TraceGen at scale,
we develop TraceForge, a data pipeline that trans-
forms heterogeneous human and robot videos into con-
sistent 3D traces, yielding a corpus of 123K videos and
1.8M observation–trace–language triplets. Pretraining on
this corpus produces a transferable 3D motion prior that
adapts efficiently: with just five target robot videos, Trace-
Gen attains 80% success across four tasks while offering
50–600× faster inference than state-of-the-art video-based
world models. In the more challenging case where only five
uncalibrated human demonstration videos captured on a
handheld phone are available, it still reaches 67.5% success
on a real robot, highlighting TraceGen’s ability to adapt
across embodiments without relying on object detectors or
heavy pixel-space generation.

1. Introduction

Robots are expected to master diverse manipulation tasks
across platforms and scenes, yet collecting sufficient, task-
specific robot demonstrations is slow and costly. In contrast,
large corpora of human videos are readily available, but em-
bodiment, camera, and scene disparities make direct reuse
difficult. We ask: Can we exploit cross-embodiment videos
to overcome small-data regimes for new robots and tasks?

Limitations of pixel and language spaces. Recent
progress in large vision-language-action models and mul-
titask policies is notable, but performance often degrades
outside training domains [3, 6, 23]. A natural alternative is
to leverage pretrained world models built on video genera-
tion or vision-language models (VLMs) [27, 28, 36, 53–55].
However, video generators operate in pixel space, allocating
capacity to backgrounds and textures that are irrelevant to
control, while VLMs produce token sequences that lack the
spatial precision required for fine-grained object motion. In
both families, inference is computationally expensive, com-
plicating real-time planning and fine-tuning.

Figure 2. TraceForge-123K dataset distribution. Our cor-
pus contains 1.8M observation–trace–language triplets, spanning
tabletop, egocentric, and in-the-wild footage with moving cam-
eras to support generalization across embodiments and scenes.

Key insight: a shared 3D structure. Although embod-
iments differ in kinematics and scale, the motion of ma-
nipulated objects and end-effectors admits a shared, scene-
centric 3D structure. We term this compact, symbolic rep-
resentation the trace-space: a sequence of 3D trajectories
that captures the where and how of motion while discard-
ing appearance and backgrounds. Learning in trace-space
promises invariance to camera and environment, and a prac-
tical path to reusing cross-embodiment, in-the-wild video.

Approach: TraceGen in trace-space. We propose
TraceGen, a world model that predicts future motion di-

rectly in 3D trace-space rather than pixels. By modeling
scene-level trajectories, TraceGen focuses on the geometric
signal pertinent to manipulation and avoids heavy genera-
tive rendering. Pretraining on in-the-wild human videos and
heterogeneous robot datasets gives TraceGen a transferable
motion prior that adapts to new robots and scenes with only
a few warm-up videos—enabling fast human→robot and
robot→robot transfer without object detectors or heuristic
filtering.

Data engine: TraceForge. To enable scalable training,
we introduce TraceForge, which consolidates hetero-
geneous sources—from controlled in-lab robot videos to
in-the-wild human videos—into a unified 3D trace repre-
sentation. TraceForge compensates camera motion, recon-
structs frame-level trajectories from multiple viewpoints,
and applies speed retargeting to normalize embodiment-
dependent motion. The resulting dataset comprises 123K
videos and 1.8M observation–trace–language triplets, pro-
viding diverse supervision for a robust 3D motion prior.
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Results in low-data regimes. We evaluate two low-
data adaptation settings that differ in the source and em-
bodiment: (i) Robot→Robot adaptation (small in-domain
warm-up)—with a five warm-up set of target-robot videos,
TraceGen attains 80% success across four tasks; and
(ii) Human→Robot transfer (no target-robot data)—fine-
tuning TraceGen only on five uncalibrated human demon-
stration videos recorded with a handheld phone in a differ-
ent scene yields 67.5% real-robot success. In both settings,
trace-space inference is 50–600× faster than state-of-the-art
video-generation-based world models.

Contributions. Our contributions are:
• TraceGen: a world model that operates in 3D trace-

space, enabling learning from cross-embodiment, cross-
environment, and cross-task videos by abstracting appear-
ance and camera variation.

• TraceForge: a unified pipeline that converts cross-
embodiment videos into consistent 3D traces via camera-
motion compensation, and speed retargeting.

• Scalable 3D trace learning and unified policy: training
on 1.8M observation–trace–language triplets across 123K
videos (>15× prior work) to learn a single, embodiment-
agnostic policy in trace space that predicts scene-level 3D
motion without detectors or heuristic filtering.

• Efficient few-shot adaptation: 80% success across four
tasks with five in-domain robot videos and 67.5% success
from five human demos (human → robot transfer from
handheld, uncalibrated camera), while achieving > 50×
faster inference than video-based world models.

2. Related Work
2.1. Embodied World Models
World-model formulations for robotic manipulation span
three major output-space families:

First, video generation models predict raw pixels in fu-
ture frames [27, 34, 58]. While expressive, they spend ca-
pacity reconstructing backgrounds and textures irrelevant to
control, increasing computational cost, and risking geome-
try/affordance hallucinations (Fig. 3(a)).

Second, language token-space models, such as VLM-
based planners, generate discrete tokens; however, token-
level outputs lack the spatial and temporal resolution re-
quired to represent fine object motion, limiting downstream
control [1, 26, 28, 48] (Fig. 3(b)). Some works attempt to
represent motions as skill tokens [8, 22], but such represen-
tations inherit the limitations of their predefined extractors.

Third, trace prediction models directly output future mo-
tion signals. Although more efficient and better aligned
with control, previous work primarily trains on static, in-
lab demonstrations and is largely restricted to 2D traces
[4, 14, 38, 45, 47]. Few 3D variants [62] still focus solely

(a) NovaFlow (Wan2.2-I2V) (b) Gemini Robotics-ER 1.5

(d) Im2Flow2Act(c) 3DFlowAction

Bounding box 
miss the tool

Incorrect bounding-
box prediction

Hallucinated 
robot gripper

Plausible motion but 
insufficient tool contact

Figure 3. Failure cases of existing embodied world models. (a)
Video-based models can hallucinate geometry or affordance. (b)
VLM token outputs fail to capture fine motion. Bounding boxes
miss the tool (c) or become overly broad (d).

on manipulated objects, requiring auxiliary object detection
and heuristic filtering. These modules introduce error cas-
cades and cannot capture robot motion, yielding an incom-
plete physical representation (Fig. 3(c)).

In contrast, TraceForge provides a lightweight
pipeline that extends beyond in-lab data to in-the-wild
videos, enabling the construction of large-scale training
sets. Building on this, TraceGen is trained on 15× larger
image–trace–language triple data than prior work [62]
and predicts scene-level 3D trajectories—robot and objects
together—without heuristic filtering or bounding boxes.
This yields a unified motion representation suitable for
cross-embodiment learning.

Implicit world models for representation learning. Or-
thogonal to the output-space families above, a body of work
learns implicit world models that shape latent dynamics
for control without explicitly decoding future pixels or ob-
ject/scene traces. [9, 41, 59, 60, 63]. These methods have
shown strong representation transfer, but typically operate
in 2D feature space and do not provide metrically consis-
tent, scene-level 3D motion; precise object/end-effector tra-
jectories then require additional modules. TraceGen is com-
plementary: it explicitly models future motion in a compact
3D trace space, yielding a physically grounded, retargetable
representation; in principle, implicit objectives can be lay-
ered onto TraceGen’s encoder to further strengthen pretrain-
ing.
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Figure 4. Building the TraceForge dataset. From an input video Vin: (i) chunk task-relevant spans for curation and generate task
instructions (Sec. 3.1); (ii) estimate camera pose and depth, select a reference image and track 3D points to form a raw trace (Sec. 3.2);
(iii) apply world–to-camera alignment (Sec. 3.3); (iv) speed retargeting to produce the final 3D trace (Sec. 3.4).

2.2. Trace for Robot Manipulation
While scaling visual imitation has achieved promising ma-
nipulation skills, large models often need numerous expert
robot trajectories and still struggle to generalize to new ob-
jects and scenes [5, 13, 18, 30, 32, 50, 64]. To improve
transfer while reducing reliance on robot-only data, pre-
vious work leverages structured motion representations —
trace. The predicted trace can be used by a variety of down-
stream modules, such as planning or tracking-based exe-
cution [12, 15, 27, 39, 42, 51], supervision or observation
for policy learning [17, 52, 61], or high-level planning. In
this work, we adopt a basic tracking controller as a minimal
demonstration of executing our scene-level 3D traces; de-
veloping more sophisticated policies is left for future work.

3. TraceForge: Dataset Construction
Overview of the TraceForge-TraceGen Pipeline. Trace-
Forge and TraceGen together form a unified world-
modeling framework. TraceForge serves as a scalable data
engine (Sec. 3), converting heterogeneous human and robot
videos into consistent 3D trace annotations paired with mul-
timodal observations and language. TraceGen (Sec. 4) is
trained on these large-scale trace-annotated triplets to learn
a scene-level motion prior that predicts future trajectories
directly in 3D trace-space. The next sections detail each
component.

We introduce TraceForge, a unified pipeline that
turns heterogeneous human and robot videos into large-
scale, trace-annotated world-modeling data. Unlike prior
work limited to static cameras or object-centric filtering,
TraceForge operates directly on in-the-wild footage with
moving viewpoints: it estimates camera pose, compensates

camera motion, and reprojects traces into a fixed reference
camera camref . Each episode is paired with automatically
generated task instructions, yielding multimodal triplets
of {observation, trace, language}. Using TraceForge, we
curate 123K episodes (∼1.8M observation–trace–language
triplets) from eight sources spanning human demonstra-
tions, single-arm robot manipulation, and bimanual robot
manipulation [7, 10, 11, 16, 21, 31, 33, 35, 43].

3.1. Event Chunking and Instruction Generation
To align traces and language with underlying actions, we
isolate task-related segments from each video and use them
to construct observation–trace–language triplets. When
start–end event indices are available, we extract the corre-
sponding segment, splitting episodes with multiple labels
into separate chunks. Otherwise, we identify task-relevant
frames by removing those with negligible motion, as deter-
mined from point-tracking results.

For each event chunk, we generate diverse task instruc-
tions to better reflect how humans naturally specify goals to
a robot and to reduce sensitivity to any single phrasing. Us-
ing a VLM, we produce three complementary instructions:
(i) a short imperative, (ii) a multi-step decomposition, and
(iii) a natural, human-like request. When the dataset already
provides a human-written instruction, we keep it and aug-
ment it with these three variants. Otherwise, we sample
representative frames from the start, middle, and end of the
chunk and prompt the VLM to propose task instructions.

3.2. 3D Point Tracking with Camera Pose and Depth
Prediction

We extract 3D traces from videos with camera motion by
recovering per-frame traces from each camera viewpoint.
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Figure 5. Overview of TraceGen. Given language, RGB, and depth inputs, text is encoded by a frozen T5 encoder, RGB images
are processed by DINOv3 and SigLIP, and depth maps are passed through a SigLIP encoder with a learnable stem adapter. The resulting
visual features (RGB + depth) are concatenated and linearly projected to form unified visual tokens. Together with text tokens, these
serve as conditioning inputs to a CogVideoX-based flow model, which predicts a velocity field that transforms Gaussian noise into trace
patches via ODE integration. X1 represents the velocity-like 3D keypoint increments across frames predicted by the flow decoder, where
0, · · · τi, τi+1, · · · , 1 denote the continuous interpolation times from pure noise to the clean trace increments. The predicted patches are
then unpatched into 3D keypoint trajectories, expressed in the camera coordinate frame. These trajectories can be executed using various
low-level controllers; in our experiments, we apply inverse kinematics to map predicted 3D traces to robot joint commands.

At the beginning of each event chunk, we select a reference
frame, place a uniform 20 × 20 grid of keypoints K on its
image, and track these points for a trace length of L steps.
Instead of representing traces in full camera coordinates,
we model each 3D trace point as (x, y, z), where (x, y) de-
notes the image-plane coordinates and z is the correspond-
ing depth. This allows 3D traces to share the same screen
alignment as 2D traces, enabling co-training and consistent
supervision across both 2D and 3D modalities.

For 3D estimations of a video, including camera pose,
depth, and 3D point traces, we adopt TAPIP3D [57]
as the 3D tracking model with CoTracker3 [19, 25]
as the point tracker. To improve efficiency, we re-
place its MegaSAM [29] component with a fine-tuned
VGGT [44] depth and camera pose predictor from Spa-
tialTrackerV2 [46], which achieves comparable accuracy
while providing significantly faster inference without 3D
optimization. Given an event chunk, our model generates
per-frame camera poses and depth maps, and then recon-
structs 3D point traces for the tracked keypoints. We desig-
nate the reference camera frame as camref and its depth map
as Dref , and express all 3D traces in the coordinate system
of camref , providing a consistent reference frame that effec-
tively compensates for camera motion during data curation.
We additionally run CoTracker3 as a pure 2D point tracker
on videos that require only image-plane motion, yielding
extra 2D-only traces that increase the overall dataset size.
Approximately 20% of all traces in our corpus are 2D-only.

3.3. World-to-camera Transformation

We transform all 3D traces to the reference camera frame
camref to maintain point-of-view-consistency across time.
Given K 3D traces in the world coordinates, we first use the
estimated camera extrinsics at camref to transform them to
camera coordinates, yielding [Xc, Y c, Zc]⊤. Subsequently,
we obtain the pixel coordinates of the traces, (x, y), trans-
formed by the estimated camera intrinsics. Finally, we
compose the pixel coordinates and depth values as screen-
aligned 3D traces Tt:t+L

ref = [xi, yi, zi]
t+L
i=t , where L de-

notes the number of timesteps and z = Zc.

3.4. Speed Retargeting

Human and robot demonstrations of the same task often dif-
fer in duration and execution speed. If we use these traces,
the model sees the same behavior with different lengths and
time scales, making it harder to learn a consistent motion
representation. To make traces comparable across episodes
and embodiments, we apply speed retargeting.

Each trace is temporally normalized to a fixed length L
while preserving its relative motion profile. Specifically, we
compute the cumulative arc length along the 3D path, repa-
rameterize by normalized arc-length parameter, and resam-
ple at L uniformly spaced targets. This yields consistently
sampled, training-ready traces that align in length across
embodiments without distorting local velocity patterns.
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4. TraceGen: Architecture and Training

We present TraceGen, a flow-based world model that
predicts future 3D motion trajectories from multimodal ob-
servations. Our model builds on the CogVideoX [49] archi-
tecture and employs a Prismatic-VLM [20] multi-encoder
fusion strategy to integrate heterogeneous visual and lin-
guistic information.

4.1. Multi-Encoder Feature Extraction
RGB encoders. We adopt a multi-stream encoding strat-
egy that captures complementary visual representations.
For each RGB input image I ∈ RH×W×3, we extract fea-
tures using two frozen pretrained encoders:
• DINOv3 [40]: A self-supervised vision transformer (ViT-

L/16) that produces spatially-aware geometric features
Fdino ∈ RN×Dd .

• SigLIP [56]: A vision-language model (SigLIP-Base-
Patch16-384) that generates semantically aligned features
Fsiglip ∈ RN×Ds suitable for text-conditioned prediction.

Depth encoder. To incorporate 3D geometric informa-
tion, we process depth maps D ∈ RH×W through a third
encoder equipped with a learnable stem adapter—a 1×1
convolutional layer that projects single-channel depth to
the 3-channel input space expected by SigLIP, yielding
Fdepth ∈ RN×Ds

Text encoder. Task instructions are encoded using a
frozen T5-base [37] encoder, producing contextualized text
embeddings Ftext ∈ RM×D, where we fix the text sequence
length to M = 128 tokens and token dimension D = 768.

Prismatic VLM fusion. Following Prismatic VLM [20],
we concatenate the three vision streams along the feature
dimension:

Fvis = Concat(Fdino,Fsiglip,Fdepth) ∈ RN×(Dd+Ds+Ds),
(1)

then project to a unified dimension D = 768 via a learnable
linear layer:

Fvis = Linear(Fvis) ∈ RN×D. (2)

The visual tokens Fvis ∈ RN×D and text tokens Ftext ∈
RM×D are combined to form the conditioning input
Fcond ∈ R(N+M)×D for the flow-based trace decoder.

4.2. Flow-based Trace Decoder
Architecture. Our decoder adapts CogVideoX’s [49] 3D
transformer to operate in trace space. The input is a K × L
grid where K = 20×20 spatial keypoints are tracked across
L = 32 future timesteps, with each point as (x, y, z) ∈

R3 in the camera frame. We apply spatial patchification
with patch size 2× 2, where each 2× 2 group of keypoints
is processed as a single token, resulting in 10 × 10 spatial
tokens per timestep. Following CogVideoX, we inject Fcond
via Adaptive LayerNorms applied separately to contextual
input and latent trace tokens, enabling efficient fusion.

Trace generation via stochastic interpolants. Our
model aims to generate the 3D trace of the scene, denoted
as Tt:t+L

ref . Each Tt
ref corresponds to a 20×20 uniform grid

with depth map value at time t. Thus, instead of predicting
these absolute grid values directly, we observe that the full
3D trace Tt:t+L

ref can be equivalently reconstructed from the
temporal differences

∆Tt
ref = Tt+1

ref −Tt
ref . (3)

Therefore, our neural network is trained to predict
velocity-like increments in keypoints, implicitly capturing
the scene’s underlying 3D motion.

We adopt the Stochastic Interpolant framework [2],
which unifies diffusion-based and flow-based generative
models by defining an interpolation path between data and
noise distributions. To streamline notation, we denote the
keypoint increments ∆Tt

ref as X ∈ RK×L×3, which serves
as our target data distribution. The framework introduces a
stochastic interpolant:

Iτ = ατX
1 + στε, τ ∈ [0, 1], (4)

where X1 is the ground-truth trace, ε ∼ N (0, I) is Gaus-
sian noise, and ατ , στ are time-dependent schedules. By
varying ατ and στ , this framework encompasses a range
of generative models, including diffusion models and flow-
matching methods.

The framework learns a velocity field v(x, τ,Fcond) that
characterizes the time evolution of the interpolant, where x
denotes a sample from the interpolant distribution at time τ :

v(x, τ,Fcond) = E[İτ | Iτ = x,Fcond], (5)

where İτ denotes the time derivative and the expectation is
over X0,X1 conditioned on Iτ = x and Fcond.

Linear interpolation ODE. Among the variants within
the Stochastic Interpolant framework, we implement a lin-
ear interpolation ODE by choosing ατ = τ and στ = 1−τ :

Xτ = (1− τ)X0 + τX1, τ ∈ [0, 1], (6)

With this linear schedule, the velocity field simplifies to
Ẋτ = X1−X0, which is constant in time. We train a neural
network vθ to predict this velocity by minimizing:

LSI = Eτ,X0,X1

[
∥vθ(Xτ , τ,Fcond)− (X1 −X0)∥2

]
.
(7)
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(a) Folding the black pants (Clothes) (b) Inserting the tennis ball into the box (Ball) (c) Sweeping trash into the dustpan (Brush) (d) Placing a block on the purple book (Block)

Figure 6. Real-world experiments with predicted 3D traces. We evaluate TraceGen and baselines on four real-world manipulation tasks
on a Franka Research 3 robot, showing that the predicted 3D traces transfer effectively to real-robot execution.

At test time, we generate trajectories via 100-step ODE
integration, relying solely on the conditional model with
multimodal vision-language conditioning.

Encoder freezing strategy. To leverage pretrained rep-
resentations efficiently, we keep all encoders (DINOv3,
SigLIP, T5) frozen throughout training and trains only the
fusion layer and decoder, following [20].

5. Experiments
Our experiments address three questions: (1) Effectiveness
of TraceGen: Does planning in compact 3D trace space
improve performance and inference efficiency compared
to pixel-based alternatives? (Sec. 5.1) (2) Human–Robot
Transfer: Can TraceGen enable efficient human-to-robot
transfer from uncalibrated, in-the-wild videos with differ-
ing camera, backgrounds, and object layouts? (Sec. 5.2)
(3) Role of Pretraining and Warmup: How much do
large-scale cross-embodiment pretraining and lightweight
warmup contribute to performance and generalization?
(Sec. 5.3) (We report a quantitative sanity check of Trace-
Forge trace accuracy in the Appendix B.)

Warm-up rationale. TraceGen learns a unified pol-
icy in 3D trace space, predicting future scene-level trajecto-
ries that are embodiment-agnostic. To execute on a specific
robot, these traces must be “translated” into the robot’s ac-
tion space via a lightweight warm-up.
Settings. We evaluate two lightweight regimes that differ
only in the source of supervision for warm-up (For both
warm-up regimes, we do not cherry-pick demonstrations.
We also provide visualizations of all warm-up data in the
Appendix E.1.):
1. Robot→Robot (small same-embodiment warm-up).

We fine-tune TraceGen using a five in-domain set of
robot demonstrations. The demonstrations differ from
the target tasks in the object/target configuration and the
robot’s initial pose. For example, in Brush, demonstra-

tions begin with the brush already in contact with (or
very close to) the table and thus omit the critical “lower
the brush” motion required at test time. Similarly, for
Block, demonstration videos use target regions with ran-
domly varying colors and positions.

2. Human→Robot (no target-robot data). We fine-tune
TraceGen with five uncalibrated human demonstra-

tions (handheld phone, different scene) to adapt trace
predictions to the target task; no target-robot demonstra-
tions are used. Each video is only 3–4 seconds long,
and a single person performing the task while another
records it is sufficient to obtain the data. Overall, collect-
ing 20 demonstrations across four tasks required under
4 minutes, making the warm-up extremely easy.

5.1. Performance and Efficiency Comparison in
Real-World Experiment

Tasks and setup. We evaluate on four manipulation tasks
executed on a Franka Research 3 robot: folding a garment
(Clothes), inserting a tennis ball into a box (Ball), sweeping
trash into a dustpan with a brush (Brush), placing a block in
the purple region (Block). Given a single RGB-D frame and
a language instruction, TraceGen predicts a 3D trace, which
is converted to joint commands via inverse kinematics.

Baselines. We include both video-based and trace-based
world models. Video-generation approaches such as
AVDC [24] and NovaFlow [27] first synthesize future video
and then estimate 3D motion post hoc; consistent with
NovaFlow’s evaluation, we use only the video-generation
component of AVDC and apply a unified video-to-trace
extraction pipeline across all video-based baselines. For
3DFlowAction [62], which relies on segmentation masks,
we supply ground-truth masks due to frequent failures of
the original mask estimator.

Performance. Fig. 7 shows that all methods below 10B
parameters—except TraceGen (0.67B)—fail to produce
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Figure 7. Success rate vs. inference efficiency (predictions per minute; higher and rightward is better). TraceGen achieves the best
combination of success and efficiency, outperforming both video and trace-based baselines by a large margin. Gains stem from its strong
3D motion prior and a lightweight warm-up in trace space via TraceForge. In contrast, video-generation baselines (e.g., NovaFlow or
video backbone in AVDC) offer no practical few-shot warm-up path in our setting, and several trace baselines rely on object detectors or
heuristic object filtering, making warm-up technically difficult. (The Veo 3.1 latency is measured based on its average API call time.)

executable trajectories in the zero-shot setting (0% suc-
cess across all tasks). Large video-generation models—
NovaFlow (Wan2.2) and NovaFlow (Veo3.1)—achieve
non-zero zero-shot success, but at the cost of extremely
slow inference. Under the same 5-video warm-up proce-
dure, TraceGen attains 80% success across four tasks
despite variations in object layouts and initial robot poses.
Large video-generation models exceeding 10B parameters
are impractical to warm up due to proprietary APIs or sub-
stantial computational requirements. These results suggest
that TraceGen’s few-shot adaptability stems from its com-
pact trace-space representation and the TraceForge pipeline,
which together provide stable motion priors and consistent
supervision for lightweight warm-up.

Inference efficiency. Planning in 3D trace space offers
substantial computational benefits. TraceGen runs 3.8×
faster than trace-generation baselines and over 50× faster
than large video-generation models. NovaFlow (Wan2.2)
requires more than 600× longer inference time, highlight-
ing the difficulty of scaling pixel-space video prediction for
real-time robotics. TraceGen thus provides a practical and
efficient solution for closed-loop planning.

5.2. Human–Robot Skill Transfer

Figure 8. Human-to-robot skill transfer using human demo
videos. TraceGen, finetuned on 5 in-the-wild handheld phone
videos, successfully executes four manipulation tasks, with a suc-
cess rate of 67.5%. In contrast, the From Scratch model fails (0%),
indicating that cross-embodiment pretraining is essential.

Protocol and results. We evaluate whether TraceGen can
transfer skills from in-the-wild human demo videos to a real
robot. For each task, we collect five handheld phone videos
recorded without camera calibration, with varying view-
points, backgrounds, and object layouts. TraceForge recon-
structs 3D traces from these demonstrations, and TraceGen
is finetuned on the resulting traces before deployment on a
Franka Research 3 robot. As shown in Fig. 8, finetuning
on the five human demos yields an overall success rate of
67.5% across four tasks, whereas the From Scratch model
fails on all tasks (0%). Despite substantial differences in
embodiment, camera intrinsics, and scene appearance, the
pretrained TraceGen model adapts effectively with only a
small number of uncalibrated human videos, indicating that
the 3D trace representation provides a practical bridge be-
tween human demonstrations and robot execution.

5.3. Role of Pretraining and Warmup

We investigate how large-scale cross-embodiment pretrain-
ing affects TraceGen’s ability to adapt with few task demon-
strations. We compare the pretrained model with a From
Scratch variant that shares the same architecture but is
trained only on warmup data.

Few-shot warmup and the importance of pretraining.
Table 1 summarizes the effect of 5-video and 15-video
warmups. With five target-robot videos, the pretrained
model achieves an overall success rate of 80%, whereas the
scratch model attains 25%. Increasing warmup to fifteen
videos yields limited additional improvement for the pre-
trained model (82.5%) and marginal change for the scratch
variant (30%). These results indicate that the majority
of TraceGen’s performance stems from pretraining, with
warmup primarily aligning pretrained motion priors with
task-specific configurations.
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Table 1. Effect of cross-embodiment pretraining under 5-video
and 15-video warmup. Pretraining significantly improves success
rates compared to training from scratch.

Warm-up Pretraining Clothes Ball Brush Block Overall SR(%)

5 robot videos Random init. 10/10 0/10 0/10 0/10 25.0%
TraceGen 10/10 6/10 8/10 8/10 80%

15 robot videos Random init. 10/10 0/10 0/10 2/10 30.0%
TraceGen 10/10 9/10 8/10 6/10 82.5%

Effect of pretraining source. To quantify the role of pre-
training data, we compare four variants trained with the
same 5-video warmup set but different pretraining sources:
(1) no pretraining (From Scratch); (2) pretraining on SSV2
(human hand–centric, 35K clips); (3) pretraining on Agi-
bot (robot-centric, 35K clips); and (4) full TraceGen pre-
training on the cross-embodiment dataset. Under identical
warmup, SSV2 pretraining yields 25% success and Agibot
yields 45%, both lower than cross-embodiment pretraining
on the full dataset. These results suggest that both embodi-
ment alignment (robot-centric data) and heterogeneous mo-
tion coverage (human + robot sources) matter, and combin-
ing them yields substantially better transfer.

Table 2. Effect of pretraining source on 5-video warmup per-
formance. Cross-embodiment pretraining with a larger dataset
(TraceGen) yields substantially higher success than single-source
pretraining and full scratch training.

Task From scratch SSV2 only Agibot only TraceForge-123K

Ball 0/10 3/10 4/10 6/10
Block 0/10 2/10 5/10 8/10
Overall SR(%) 0% 25% 45% 70%

6. Conclusion

We presented TraceGen, a cross-embodiment world
model that predicts future motion in compact 3D trace space
rather than pixel space. By representing manipulation tasks
as 3D traces of scene points, TraceGen achieves a unified
motion representation that generalizes across diverse em-
bodiments—from human hands to robot arms. To enable
large-scale training, we introduced TraceForge, a data-
curation pipeline that processes heterogeneous sources into
consistent 3D traces by compensating for camera motion
and normalizing embodiment-specific speeds. Pretrained
on 123K episodes, TraceGen achieves 80–82.5% success
on real-world tasks with only 5–15 demonstrations, running
50× faster than video-based approaches. These results sug-
gest that reasoning in trace space provides an effective in-
ductive bias for cross-embodiment learning, offering both
computational efficiency and sample efficiency for robot
manipulation.

7. Limitations and Future Work
Within the Stochastic Interpolant framework, we adopt lin-
ear interpolation with ODE integration. While this ap-
proach allows sampling diverse trajectories through differ-
ent noise initializations, we have not yet explored alter-
native interpolation schedules or mechanisms to explicitly
control which trajectory mode is generated for ambiguous
tasks.

The quality of demonstration data varies. A portion
of our source videos contains inefficient or corrective mo-
tions—where operators make exploratory movements or er-
rors before completing tasks—introducing suboptimal su-
pervision signals. We implemented additional filtering steps
to clean the dataset, though some noisy demonstrations re-
main.

Moreover, TraceGen’s zero-shot generation ability,
while promising, is not yet fully reliable under novel em-
bodiments or unseen environments, occasionally yielding
plausible but physically infeasible trajectories. Addition-
ally, for fine-grained manipulation tasks, the generated tra-
jectories may lack sufficient detail for the robot to exe-
cute precise manipulation actions. Scaling to internet-scale
demonstration datasets, combined with improved data fil-
tering mechanisms, could address these issues. Finally,
extending beyond human-like robot arms to very different
robot types would test the limits of trace-space abstraction.
Despite these challenges, we believe TraceGen’s efficiency
and generality represent a meaningful step toward practical
cross-embodiment manipulation systems.
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Appendix

A. Prompts for Task Instruction Generation

To obtain consistent and diverse task instructions from
video segments in TraceForge, we use a vision-language
model (VLM) to transform representative video frames into
three complementary instruction styles. As described in
the main manuscript, each event chunk is paired with (i) a
concise imperative command, (ii) a stepwise manipulation
instruction, and (iii) a natural, human-like request. When
human-written instructions are already available, we pre-
serve them and augment them with these additional vari-
ants. Otherwise, we sample frames from the beginning,
middle, and end of the chunk and prompt the VLM to gen-
erate instructions following the structured specification be-
low.

Sample Prompt for Instruction Generation

You are an expert image analyzer. You will receive
a sequence of frames from a single video episode
that records a simple manipulation task. The frames
are ordered chronologically from initial state to final
state.
GOAL Infer the most likely task being performed
in this episode and return the OUTPUT FORMAT
below.
TASK INSTRUCTIONS
• IMPORTANT: Do NOT generate a descriptive

sentence like “The agent is trying to grab the sink
faucet.”

• Instead, generate instructions as if a human is di-
rectly commanding a robot or agent to make this
situation happen.

• Provide exactly three instructions, one for each
category:
– instruction 1: Direct, simple imperative

command e.g., “Turn on the faucet.”
– instruction 2: Step-by-step explicit ma-

nipulation e.g., “Move your gripper toward the
faucet handle.”

– instruction 3: Natural human-like re-
quest e.g., “Can you turn on the sink for me?”

• All instructions must explicitly state what object
is manipulated and how.

Instruction length rules
• instruction 1: ≤ 10 words
• instruction 2: ≤ 20 words
• instruction 3: ≤ 15 words
The operator can be a human, robot, or tool.
OUTPUT (JSON ONLY)

{

"instruction_1":
"<=10 words
imperative command>",

"instruction_2":
"<=20 words
stepwise/explicit command>",

"instruction_3":
"<=15 words
natural human-like request>"

}

POLICIES
• Do NOT invent objects that are not visible.
• Prefer specific names if clear (banana), else

generic ones (container).
• All strings must be in English.
• Return only valid JSON—no markdown or extra

text.

B. 3D Trace Extraction Accuracy of Trace-
Forge

As discussed in the main text, TraceForge provides the
large-scale 3D motion supervision used to train TraceGen.
To ensure that this supervision is reliable, we report a quan-
titative sanity check of TraceForge’s 3D trace extraction ac-
curacy.

We evaluate whether TraceForge recovers 3D trajecto-
ries that faithfully reflect real robot motion by comparing its
predicted traces with ground-truth end-effector trajectories
obtained via forward kinematics across nine teleoperated
episodes. Since TraceForge represents motion as a 20× 20
grid of point trajectories, we identify, for each episode, the
predicted point whose 2D projection is closest to the end-
effector in the first frame and treat its 3D path as the corre-
sponding predicted trace.

Across episodes (13–24.5 seconds each, with an av-
erage displacement of 70.96 cm), TraceForge achieves
sub–2.3 cm endpoint error on all axes (Table 3). These re-
sults indicate that the TraceForge extraction pipeline pro-
duces centimeter-level motion accuracy, providing reliable
supervision for training TraceGen.

Table 3. Absolute endpoint error along the x, y, z axes in camera
coordinate between predicted and ground-truth trajectories.

Error (cm) x y z

Mean 1.66 1.79 2.26
Std 0.82 1.82 2.69
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C. Model Training Details
This section provides comprehensive details on Trace-
Gen’s training configuration, complementing the architec-
ture overview in the main manuscript. TraceGen employs
a multi-encoder architecture with DINOv2 and SigLIP for
RGB feature extraction, a depth encoder with a learnable
stem adapter for geometric information, and T5 for text en-
coding.

C.1. Encoder Freezing Strategy
To leverage pretrained representations efficiently, we keep
all encoders (DINOv2, SigLIP, T5) frozen throughout train-
ing and train only the fusion layer and decoder. This de-
sign choice follows Prismatic VLM [20], which demon-
strated that finetuning visual backbones significantly de-
grades performance on vision-language tasks. Their analy-
sis revealed that updating pretrained vision encoders during
task-specific finetuning leads to catastrophic forgetting of
the rich visual priors learned during large-scale pretraining.

By maintaining frozen encoders, TraceGen retains:
• Visual features from DINOv2, trained via self-

supervised learning on large-scale natural images, provid-
ing strong geometric and semantic understanding

• Vision-language alignment from SigLIP, enabling ef-
fective conditioning on text instructions

• Linguistic representations from T5, capturing task se-
mantics and manipulation goals
The trainable fusion layer and flow-based decoder learn

to combine and map these frozen representations to the 3D
trace prediction task. This approach substantially reduces
the number of trainable parameters, accelerates training,
and improves generalization to unseen manipulation scenar-
ios.

D. Evaluations
D.1. Evaluation setup
We evaluate whether 3D traces predicted by TraceGen en-
able effective robot manipulation. Experiments are con-
ducted on a Franka Research 3 robot across four tasks:
• folding a garment (Clothes)
• inserting a tennis ball into a box (Ball)
• sweeping trash into a dustpan with a brush (Brush)
• placing a LEGO block in the purple region (Block)

Given a single RGB-D observation and a text instruc-
tion, TraceGen predicts trajectories using 100-step ODE in-
tegration with classifier-free guidance (guidance scale 2) for
Brush and Clothes, and without guidance for Block and
Ball. The predicted trajectories are converted into joint-
space commands through inverse kinematics after trans-
forming them from the camera frame to the robot base
frame Tbase←camref

. For all methods, the predicted z val-
ues are rescaled to match the measured depth maps.

D.2. Depth rescaling
To align the predicted trace depths with the original sensor
depth, we apply a depth-rescaling procedure. Similar to No-
vaFlow, which computes a single scaling factor based on the
median depth of the initial ground-truth map, we also begin
by estimating a global scaling factor between the predicted
depth and the sensor depth.

However, unlike the environments used in NovaFlow,
our settings exhibit much larger variations and more fre-
quent movements along the depth axis. We observed that
using a single median-based scalar often leads to substan-
tial depth estimation errors in such scenarios.

To address this, instead of relying on a single global
statistic, we compute a pixel-wise depth rescaling map by
directly comparing the predicted and sensor depth maps
across all pixels. We then apply a Gaussian blur to this map
to obtain a smooth depth-rescaling field, and multiply this
smoothed map with the predicted 3D trace to correct its z-
values.

D.3. Implementation details for the baselines
3DFlowaction The official 3DFlowAction implementa-
tion relies on a filtering pipeline to extract object masks.
This pipeline combines a language-conditioned object de-
tector with a heuristic process designed to remove the robot
gripper. However, when only a single image is provided as
input, the detector often fails to identify the target object re-
liably or to filter out the robot end-effector. As a result, the
predicted masks frequently include parts of the robot itself.

To mitigate this issue, and consistent with the official
implementation, we provide a short sequence of images
containing minimal robot motion. These slight temporal
changes help the filtering pipeline correctly identify the
robot gripper, allowing the final filtered region to closely
match the ground-truth object mask. To ensure the gen-
erated object mask aligned with the expected robot move-
ment, we manually checked whether the detected bounding
box is aligned with the ground truth bounding box of the
target objects.

NovaFlow The original NovaFlow pipeline includes a
grasp-proposal module and a trajectory-planning module.
Since our tasks do not involve grasping, we remove the
grasp-proposal stage and initialize the robot in a state where
it is already holding the object, ensuring a fair comparison.

In addition, the official NovaFlow implementation uses
MegaSaM [29] with TAPIP3D for camera pose estimation
and depth prediction. For fair comparison, we replace the
MegaSaM component with the same fine-tuned VGGT [44]
depth and pose predictor from SpatialTrackerV2 [46] that
we use in TraceForge. This VGGT-based predictor achieves
similar accuracy while providing substantially faster infer-
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(a) TraceGen (Warmed up with robot demo)

(b) TraceGen (Warmed up with human demo)

(c) NovaFlow (Veo3.1)

(d) NovaFlow (Wan2.2)

Figure 9. Failure-mode breakdown for the Clothes task.

ence by avoiding expensive 3D optimization. Also, for each
NovaFlow, we use the following prompt:

• Veo3.1 (Clothes): The robot smoothly picks up the pants
leg and folds the garment in half.

• Veo3.1 (Brush): The robot arm moves the broom toward
the yellow trash, sweeps it forward, and guides it into the
dustpan.

• Veo3.1 (Block): In the picture you see robot, blue cube,
red paper, and purple paper. The blue cube is right under-
neath the robot arm. These are the only things that you
need to pay attention. The robot arm grabs the blue cube
and put it on the top of the purple paper.

• Veo3.1 (Ball): The robot arm in the image moves to grab
the tennis ball and put it into the box in the image.

• Wan2.2 (Clothes): The robot’s end effector grasps the

(a) TraceGen (Warmed up with robot demo)

(b) TraceGen (Warmed up with human demo)

(c) NovaFlow (Veo3.1)

(d) NovaFlow (Wan2.2)

Figure 10. Failure-mode breakdown for the Block task.

black pants, positions them flat, then folds them in half
to create a compact folded shape.

• Wan2.2 (Brush): The robot’s end effector grips the broom
handle and sweeps the yellow trash into the dustpan with
deliberate strokes..

• Wan2.2 (Block): The robot’s end effector grasps the
LEGO block, lifts it upward, moves it above the purple
notebook, then lowers it onto the notebook center.

• Wan2.2 (Ball): The robot’s end effector grasps the tennis
ball, lifts it upward, then moves it horizontally toward the
box and lowers it inside.

AVDC For AVDC, we follow the exact evaluation setup
used in the NovaFlow paper. Specifically, we isolate the
video-generation component from AVDC and combine it
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(a) TraceGen (Warmed up with robot demo)

(b) TraceGen (Warmed up with human demo)

(c) NovaFlow (Veo3.1)

(d) NovaFlow (Wan2.2)

Figure 11. Failure-mode breakdown for the Brush task.

with the same 3D point-tracking and depth-estimation mod-
ules used in both TraceForge and NovaFlow, ensuring con-
sistency across all baselines.

Inference latency measurement. All baseline runtimes
were measured on an NVIDIA RTX A5000 except Wan 2.2
and Veo 3.1. Wan 2.2 could not fit on a single A5000, so we
enabled inference using multiple GPUs—an unavoidable
choice that in fact favors the baseline. Veo 3.1 is closed-
source, and its latency is reported based on average API
response time, which again places the baseline at an advan-
tage.

(a) TraceGen (Warmed up with robot demo)

(b) TraceGen (Warmed up with human demo)

(c) NovaFlow (Veo3.1)

(d) NovaFlow (Wan2.2)

Figure 12. Failure-mode breakdown for the Ball task.

E. Failure modes analysis

To better understand the behavior of each method beyond
success rates, we provide a detailed failure-mode analy-
sis across all four tasks and four model configurations: (i)
TraceGen with robot-domain warmup, (ii) TraceGen with
human video warmup, (iii) NovaFlow (Veo3.1), and (iv)
NovaFlow (Wan2.2). For each combination of task and
method, we collect every executed trial and categorize the
outcome into fine-grained success and failure types based
on object interaction quality and task completion criteria.

We visualize these distributions in Sankey diagrams,
which reveal how trials progress from the total pool of
attempts (left) into distinct outcome modes (right). This
representation highlights the long-tail structure of failure
patterns—showing whether errors arise early (e.g., incorrect
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(a) Robot warmup demo for Clothes task 

(b) Robot warmup demo for Ball task 

(c) Robot warmup demo for Brush task 

(d) Robot warmup demo for Block task 

Figure 13. Human warmup demonstrations for all four tasks,
showing first (top) and final (bottom) frames of each handheld
video.

approach) or late in the trajectory (e.g., partial completion,
drift during final alignment).

E.1. Warmup data
In this section, we visualize all warmup demonstrations
used in our experiments. As described in the main text,
TraceGen is adapted to each task using a lightweight
warmup stage, which serves to translate the embodiment-
agnostic 3D traces into the action space of the target robot
or tasks.

We consider two warmup regimes:
• Robot→Robot (same-embodiment warmup). Five in-

domain robot demonstrations are provided for each task.
These clips differ from the evaluation setting in object
layout and initial robot pose, ensuring that warmup does
not simply memorize target configurations.

• Human→Robot (cross-embodiment warmup). Five
uncalibrated human videos (3–4 seconds each) are cap-
tured per task using a handheld phone. These clips differ
substantially from the robot setting in background, light-
ing, embodiment, and object placement.
Each figure below shows all warmup demonstrations for

the four tasks (Clothes, Block, Brush, Ball). For each demo,
the top row displays the first frame and the bottom row
displays the final frame.

(a) Robot warmup demo for Clothes task 

(b) Robot warmup demo for Ball task 

(c) Robot warmup demo for Brush task 

(d) Robot warmup demo for Block task 

Figure 14. Robot warmup demonstrations for all four tasks. Top
row shows the first frame of each demo; bottom row shows the
final frame.

E.2. Long horizon experiments
To assess whether TraceGen’s predicted trace can be com-
posed into longer multi-step behaviors, we evaluate the
model on a long-horizon Sorting task. The goal is to sep-
arate blocks from white trash items: each block must be
placed in a designated green region, and each trash item
must be placed in the red region. We collect five human
teleoperation demonstrations of the full sorting process and
segment them into four primitive subtasks, which serve as
warmup data for TraceGen.

The sorting procedure consists of the following four con-
secutive subtasks:
1. Place the left trash on the red paper.
2. Place the pink LEGO block on the green paper.
3. Place the blue LEGO block on the green paper.
4. Place the right trash on the red paper.
Completing all four subtasks in sequence constitutes a suc-
cessful sorting episode.

Use of scripted grasping. Because TraceGen models
only the 3D trace component of manipulation and does not
include an external grasping module, we assume access to a
pre-defined scripted policy for picking up each object. This
policy moves the robot to a preset grasping pose, enabling
the placing skill generated by TraceGen to begin from a
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Figure 15. Visualization of the long-horizon Sorting task, showing
the four sequential placement subtasks from left to right.

consistent home configuration.

Results. We compare TraceGen initialized with pretrain-
ing from the TraceForge-123k dataset (“Warmed up from
TraceGen”) against a From Scratch model trained only on
the four warmup segments. Table 4 reports per-step success
rates across 10 rollouts. While the pretrained model oc-
casionally fails the first trash placement, it maintains high
performance on all subsequent subtasks. In contrast, the
scratch model exhibits compounding errors over time, with
success rates degrading markedly in the later steps.

Table 4. Long-horizon Sorting task: per-subtask success rates (left
to right indicates temporal order).

Model Left Trash → Pink Block → Blue Block → Right Trash

Warmed up from TraceGen 0.8 0.8 0.8 0.8
From Scratch 1.0 0.8 0.5 0.4

Overall, these long-horizon results show that Trace-
Gen’s pretrained motion priors enable stable composition
of primitive placing behaviors, mitigating error accumula-
tion across sequential subtasks. Although the model was
not explicitly optimized for extended planning, its compact
3D trace representation supports reliable stitching of skills
over longer task horizons.
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